Immunology and Immune Dysfunction

1. Innate immune system
2. Adaptive immune system
3. Hypersensitivity
4. Immune dysfunction
1. Innate immune system

- The innate immune system is non-specific and acts rapidly on extracellular pathogens
 - **Phagocytes** (neutrophils and macrophages) endocytose and degrade bacteria and cellular debris
 - Phagocytic cells express pathogen recognition receptors (PRRs)
 - PRRs bind to pathogen-associated molecular patterns (PAMPs)
 - **Macrophages** are long-lived, ubiquitous within tissues and secrete important cytokines
 - Secretion of IL-1 and IL-6 causes fever (see acute phase response below)
 - Secretion of IL-8 activates and recruits neutrophils to sites of infection
 - Secretion of IL-12 activates T cells and natural killer cells
 - **Neutrophils** are short-lived but powerful phagocytes and move to sites of infection via chemotaxis
 - Unlike macrophages make up the majority of circulating leukocytes in the blood and not APCs
 - Are killed as they destroy pathogens – contribute to pus formation in acute inflammation
 - **Natural killer cells** do not recognise specific antigens and circulate in the peripheral blood
 - Activated by surface IgG-antigen complexes or lack of MHC class I e.g. in tumours
 - Induce apoptosis in target cells by similar mechanisms to CD8 T cells without CD4 stimulation
 - **Mast cells** (found in tissues) and **basophils** (small amounts in circulation) are granulated cells
 - IgE induces degranulation via calcium influx releasing various inflammatory mediators
 - Capillary permeability increases, blood vessels vasodilatate, extracellular matrix degrades

- The acute phase response is an immediate systemic response to infection or tissue damage
 - **Macrophages** secrete cytokines IL-1, IL-6 and TNF-α
 - These cause the liver to produce a number of acute phase proteins e.g. C-reactive protein (CRP)
 - Production of fibrinogen causes rouleaux formation (RBC stacking) and a gradual increase in ESR
 - The APPs induce fever, leucocytosis, thrombocytosis and protein/fat catabolism
 - CRP levels are particularly elevated in acute bacterial infection
 - Chronic inflammation results in high CRP and ESR – prolonged catabolism leads to weight loss

- The complement system has three pathways all leading to formation of C3 convertase
 - Involves around 20 proteins all normally circulating in the bloodstream
 - The classical pathway is activated by an antigen-antibody complex acting on C1
 - C1 activates C2 and C4
 - C2 and C4 together activate C3
 - The lectin pathway involves mannan-binding lectin (MBL) and its serine proteases (MASP)
 - MBL in the serum binds to MASP forming a complex
 - Attachment of this complex to microbial surface carbohydrates activates MASP
 - MASP activates C2 and C4 which together also activate C3
 - The alternative pathway involves C3b (more stable form of C3) attached to microbial surfaces
 - Factors B and D activate C3 directly – spontaneous activation
 - In the common pathway C3 is activated to form C3 convertase which converts C3 into C3b
 - The membrane attack complex (MAC) causes cell lysis of gram-negative bacteria e.g. Neisseria
 - C3b activates C5 to form C5b
 - C5b activates C6-C9 – together these 5 proteins form MAC itself
 - A local inflammatory response is triggered through mast cell and basophil degranulation
 - C3b activates C3-C5 (the anaphylatoxins) which induce degranulation
 - C3a and C5a promote neutrophil chemotaxis
 - Antigens and microbes can be coated in C3b in the process of opsonisation facilitating phagocytosis
2. Adaptive immune system

- The adaptive immune system is organism-specific and responds slowly on first presentation
 - Cells based in lymphoid tissue require interaction with antigen presenting cells (APCs)
 - Macrophages, dendritic cells and B cells are all APCs
 - Dendritic cells bind antigen and move from peripheral to lymphoid tissues
 - APCs contain Toll-like receptors (TLRs) on their surfaces
 - 10 identified in humans to date – each binds to specific molecular patterns
 - TLR activation results in cytokine production to mount an adaptive immune response
 - Specialised lymphocytes (B and T cells) contain antigen-specific receptors
 - Both B and T cells are produced in the bone marrow and can secrete and respond to cytokines

- Major histocompatibility complex (MHC) molecules are antigen-presenting receptors
 - Human leucocyte antigen (HLA) is encoded on chromosome 6 and variable between individuals
 - MHC class I is synthesised in the ER and found on all nucleated cells
 - Endogenous antigen undergoes intracellular proteosome degradation into fragments
 - Resulting peptides complex with MHC class I which is then expressed on the cell surface
 - Activated CD8 (cytotoxic) T cells recognise the antigen-MHC complex and kill the cell
 - MHC class II is found on APCs, thymus cells and activated T cells
 - Exogenous antigen is phagocytosed and its fragments held in intracellular vesicles
 - MHC class II is transported into the vesicle and complexes with the fragments
 - Activated CD4 (helper) T cells recognise the antigen-MHC complex and release cytokines

- B cells express surface antigen receptors as membrane-bound immunoglobulins
 - B cell receptors comprise two basal heavy chains with two light chains attached on either side
 - The apical regions of both chain types are antigen capturing areas of variable structure
 - The basal regions are class determining of fixed structure for a particular class
 - These receptors can recognise and bind antigenic epitopes directly
 - The five recognised classes of B cell receptor are IgA, IgD, IgE, IgG and IgM
 - All B cells initially express surface IgM – powerful activator of complement
 - Under influence of cytokines some receptors may undergo isotype class switching
 - Free B cell receptors are antibodies (free immunoglobulins, Ig)s
 - IgA and IgG are effective for neutralising toxins
 - IgA lines mucosal surfaces particularly in the gut – found in saliva, tears, breast milk
 - IgG is a powerful promoter of opsonisation and uniquely can cross the placenta
 - IgE is involved in allergic responses and mast cell sensitisation
 - Antigen receptor diversity is achieved through genetic recombination of 2 or 3 gene segments
 - Heavy chains comprise combinations of variable (V), diversity (D) and joining (J) regions
 - Light chains comprise combinations of the V and J regions only
 - The joining of these segments is also subject to variation – junctional diversity
 - Random nucleotides can also be spliced into heavy chains to fine-tune specificity
 - B cells undergoing mitotic division uniquely may undergo some genetic mutation – affinity maturation
 - Affinity of the variable region (antigen-capturing) for the pathogen may change
 - B cells with reduced affinity undergo apoptosis – others undergo somatic hypermutation
 - B cells can differentiate into Ig-producing plasma cells or long-term memory cells
 - Combined APC and CD4 (helper) T cell stimulation promotes plasma cell formation
 - As antigen diminishes remaining CD4 (helper) T cells alone induce memory cell formation
• **T cells** mature in the *primary lymphoid tissue* of the **thymus** through **genetic recombination**
 o Immature T cells move from the bone marrow to the cortex of the thymus in the mediastinum
 ▪ T cell receptor genes undergo genetic recombination producing diverse specificities
 ▪ Subject to junctional diversity but cannot undergo somatic hypermutation or class switching
 o T cells expressing specificity for self-antigen (i.e. of normal proteins) subsequently undergo apoptosis
 ▪ T cells specific for self-MHC only enter the inner medulla for further maturation
 ▪ 1-5% of T cell progenitors emerge as antigen-specific, immunocompetent mature T cells
 o All mature T cells express the marker CD3 by definition along with several other important proteins
 ▪ CD4+ T cells are helpers and only recognise antigen associated with self-MHC class II
 ▪ CD8+ T cells are cytotoxic and only recognise antigen associated with self-MHC class I
 ▪ CD25+ T cells are regulatory and moderate immune responses to prevent autoimmunity
 o **Cytokines** may induce CD4 (helper) T cells as Th1 (cell-mediated immunity) or Th2 (humoral immunity)
 ▪ *Tuberculous leprosy* has low infectivity and normal T cell responses – Th1 reaction (IL-12, IFNy)
 ▪ *Lepromatous leprosy* has high infectivity and low T cell responses - Th2 reaction (IL-4)
 o T cell receptors comprise an α (analogous to B cell light) and β chain (heavy) associated with CD3
 ▪ These receptors have constant (basal) and variable (apical) regions like B cell receptors
 ▪ However they can only recognise and bind to MHC-associated antigen fragments

• **Humoral immunity utilises antibodies to eliminate extracellular pathogens**
 o An extracellular pathogen expressing the exogenous antigen X penetrates mucosal barriers
 o Antigen X expresses PAMPs which bind to PRRs on a dendritic cell inducing phagocytosis
 o Fragments of degraded pathogen complexed with MHC class II are expressed on the cell surface
 o The dendritic cell moves to lymphoid tissue and binds to an antigen X-specific CD4 (helper) T cell
 o The activated T cell now expresses the CD40L surface receptor and begins cytokine production
 o Antigen X stimulates B cells in the spleen and lymph nodes expressing X-specific receptors
 o **Somatic hypermutation** occurs within the germinal centres and the B cells begin to differentiate
 o A stimulated B cell interacts with the activated T cell: CD40 binds to CD40L; B7 binds to CD28
 o The activated T cell produces cytokines IL-2 and IL-4 to -6 which activate the stimulated B cell
 o The T cell may then become a memory T cell not requiring co-stimulation in subsequent infection
 o The activated B cell undergoes clonal expansion — it proliferates and differentiates
 o Antibody-producing plasma cells and long-term memory cells are formed

• **Cell-mediated immunity utilises T cells to eliminate intracellular pathogens**
 o **CD8** (cytotoxic) T cells are powerful killer cells effective against intracellular pathogens
 ▪ Recognise and bind to class I MHC-antigen complexes on infected cell surfaces
 ▪ Generally require co-stimulation from an activated CD4 (helper) T cell for activation
 ▪ CD4 (helper) T cells activate APCs expressing relevant class II MHC-antigen complexes
 ▪ The activated APC now expresses the CD40 surface receptor
 ▪ The naïve CD8 (cytotoxic) T cell can now be activated by the infected APC
 o **Dendritic cells** express large quantities of the B7 surface receptor
 ▪ If subject to intracellular infection they can directly activate CD8 (cytotoxic) T cells
 ▪ The activated CD8 (cytotoxic) T cell produces IL-2 which induces self-proliferation
 o Activated CD8 (cytotoxic) T cells also produce several cytokines
 ▪ IFNy (interferon) inhibits viral replication and activates macrophages
 ▪ TNFα is involved in promoting the acute phase response and induces vasodilatation
 ▪ TNFβ activates macrophages
3. **Hypersensitivity**

- **Hypersensitivity** is an *inappropriate, excessive* immune response to an antigen

 o **Type I** (*allergic*) hypersensitivity involves a rapid, localised *IgE-mediated* inflammatory response
 - 10-30% of individuals have a *genetic predisposition* to IgE production – *atopy*
 - Initial exposure to antigen *sensitises* the immune system to produce large amounts of *IgE*
 - **Mast cells** become coated in IgE and *degranulate* on subsequent re-exposure to the antigen
 - Symptoms arise locally within minutes following exposure – *urticaria, rhinitis, asthma*
 - Deterioration occurs hours later when *eosinophils* are recruited from the *bone marrow*

 o **Type II** (*antibody-mediated*) hypersensitivity involves *antibodies* mounted against particular *cells*
 - Cells may be *self* (e.g. in Graves’ disease) or *foreign* (e.g. blood transfusions) – usually *IgG, IgM*
 - Antigen-antibody complexes activate *complement* via the classical pathway causing lysis (*MAC*)
 - **Natural killer cells** are stimulated to engage in *antibody-dependent cell-mediated cytotoxicity*
 - The antibodies act as *opsonins* facilitating *phagocytosis* and subsequent degradation

 o **Type III** (*immune complex*) hypersensitivity involves complexes of *antigen, antibody and complement*
 - *Immune complexes* are normally transported by RBCs to the *spleen* for degradation
 - A sudden influx of complexes results in inappropriate deposition in *tissues* and *blood vessels*
 - **Neutrophil** interaction combined with *complement* action results in *necrosis* and *vasculitis*

 o **Type IV** (*delayed*) hypersensitivity involves sensitised *T helper cells* activating numerous *macrophages*
 - CD4 (helper) T cells recognise an antigen and undergo *clonal expansion* of 1-2 weeks’ duration
 - Subsequent re-exposure triggers *cytokine* release and mass-activation of *macrophages*
 - Persisting macrophage by-products may be damaging to tissues and lead to *granuloma*

- **Anaphylaxis** is a *severe, rapid onset systemic* hypersensitivity reaction that can be fatal

 o Essentially involves an extreme systemic *type I* (*IgE-mediated*) hypersensitivity response
 - Common causes are peanuts, fish, drugs (particularly *antibiotics*), *latex*, wasp stings
 - More common in adults and usually due to *ingestion* producing less severe reactions

 o Symptoms arise within minutes following *injection* of antigen or within hours following *ingestion*
 - **Angioedema** (sudden severe skin swelling), *wheezing, shock* and *abdominal pain* are common
 - More rarely some people may experience rhinitis, headache or seizure
 - Death can occur from *respiratory obstruction or cardiovascular collapse*

 o Treatment begins with *immediate* administration of *intramuscular adrenaline*
 - Adrenaline acts on α1 receptors to induce *vasoconstriction*
 - Patient should be supine and given high-flow *oxygen*
 - In severe shock adrenaline and fluids should be administered *intravenously*
 - H1 *antagonists* (e.g. *chlorpheniramine*) may be administered as an adjunct
4. Immune dysfunction

- The **immune system** is prevented from attacking the **self** by mechanisms of **self-tolerance**
 - **Central tolerance** eliminates B and T cells that develop **high-affinity receptors** against **self-antigen**
 - Self-reactive **B cells** are detected in the **bone marrow**
 - Self-reactive **T cells** are detected in the **thymus**
 - **Peripheral tolerance** prevents peripheral self-antigens from triggering an immune response
 - Cells lack crucial **co-stimulatory molecules** (e.g. CD40) and express low levels of **MHC**
 - T cells entering the **brain, testes or anterior chamber of the eye** undergo apoptosis (Fas ligand)
 - **CD25** (regulatory) T cells secrete **IL-10** and **TGFβ** which inhibit other **self-reactive T cells**
 - These mechanisms can **fail** due to a combination of **genetic predispositions** and **environmental factors**
 - Defective HLA genes mean that self-reactive T cells are not detected in the thymus
 - Some **bacteria** and **viruses** express antigens that mimic self-antigen though this is usually minor
 - Infections can also cause non-specific mass B and T cell activation or excessive **MHC** expression

- **Failure of self-tolerance results in either systemic or organ-specific autoimmune disease**
 - **Systemic lupus erythematosus** (SLE) involves **auto-antibodies** against **DNA** and blood cell elements
 - Nine times more common in **women** compared to men
 - Defective **MHC** (HLA-DR2/DR3) and **complement-associated genes** implicated in aetiology
 - Self-reactive **B cells** generate IgG **auto-antibodies** which form numerous **immune complexes**
 - Inappropriate deposition of immune complexes leads to **arthritis** and **glomerulonephritis**
 - **Vascular damage** results in characteristic rashes e.g. on the **hands and cheeks** (**malar rash**)
 - Treatment includes **immunosuppression** and anti-inflammatory drugs
 - **Rheumatoid arthritis** is a **systemic** autoimmune disease that particularly affects the **joints**
 - Non-specific inflammation of the **synovial joints** activates **CD4** (helper) T cells
 - TNF-α and other cytokines trigger the **acute phase response** leading to **bone erosion**
 - Activated B cells secrete **rheumatoid factor** (anti-IgG IgM) exacerbating inflammation
 - **Graves’ disease** is specific to the **thyroid gland** and the commonest cause of **hyperthyroidism**
 - Self-reactive **B cells** generate IgG **auto-antibodies** against the **TSH receptor** which stimulate it
 - Negative feedback to the **hypothalamus and pituitary** to reduce TSH secretion is ineffective
 - Clinical features include **weight loss, tremor, sweating, tachycardia, exophthalmos, anxiety**
 - **Hashimoto’s thyroiditis** is an **inflammatory** thyroid disease and a common cause of **hypothyroidism**
 - Self-reactive **CD8** (cytotoxic) T cells destroy the epithelial cells reducing hormone production
 - Significant **lymphocytic infiltration** leads to **anti-thyroid peroxidase auto-antibody** production
 - Clinical features include **goitre, dry skin, facial oedema, fatigue, anovulation**
 - **Autoimmune haemolytic anaemia** involves **auto-antibody-mediated erythrocyte destruction**
 - May be **idiopathic** or secondary to SLE or chronic lymphocytic leukaemia
 - IgM auto-antibodies cause agglutination, **complement activation** and MAC-mediated lysis
 - IgG auto-antibodies act as **opsonins** and induce **phagocytic destruction** in the spleen

- **Primary immunodeficiency results from congenital defects of immune function**
 - **X-linked agammaglobulinaemia** is a rare disease in which progenitor B cells fail to mature
 - Antibodies cannot be produced resulting in failure of the **humoral immune response**
 - **Bacterial infections** become frequent but cell-mediated immunity is largely unaffected
 - Symptoms arise within the first year of life with recurrent severe **respiratory infections**
 - Treated with **intravenous immunoglobulin** and antibiotic therapy
 - **Wiskott-Aldrich syndrome** is another X-linked disorder involving eczema and **haemorrhagic diathesis**
 - Defective WASP protein results in defective antibodies, T cell responses and platelets
- Presents with recurrent bacterial infections particularly of the respiratory tract
- Secondary autoimmune disease may follow such as haemolytic anaemia

Chronic granulomatous disease (CGD) involves phagocytes being unable to kill ingested microbes
- Enzymatic defect results in inability to produce lethal oxidative burst
- Very rare but mostly X-linked with some autosomal recessive types
- Presents early in life often with skin infections, pneumonia and suppurative lymphadenitis
- Treated with interferon and cotrimoxazole though often fatal in infancy

Di George syndrome is a congenital absence of the thymus causing a severe T cell deficiency
- Spontaneous deletion on chromosome 22 occurring in 1 in 4000 births
- Third and fourth pharyngeal pouches become malformed preventing thymus development
- Cell-mediated immunity fails resulting in persistent viral infection
- Parathyroid glands fail to develop and there are often cardiac defects

Severe combined immunodeficiency (SCID) is a group of rare congenital diseases that are usually fatal
- Inherited as X-linked or autosomal recessive trait
- Combined failure of B and T cell function results in persistent infections and failure to thrive